
Tutorial V - Production Planning in Breweries
Applied Optimization with Julia

1. Modelling the CLSP

Implement the CLSP from the lecture in Julia. Before we start, let’s load the necessary packages and data.

using JuMP, HiGHS
using CSV
using DelimitedFiles
using DataFrames
using Plots
using StatsPlots
import Pkg; Pkg.add("PlotlyBase")
plotly() # This will create interactive plots later on

Tip

If you haven’t installed the packages yet, you can do so by running using Pkg first and
then Pkg.add("JuMP"), Pkg.add("HiGHS"), Pkg.add("DataFrames"), Pkg.add("Plots"), and
Pkg.add("StatsPlots").

Now, let’s load the data. The weekly demand in bottles 𝑑𝑖,𝑡, the available time at the bottling plant in hours
𝑎𝑡, the time required to bottle each beer in hours 𝑏𝑖, and the setup time in hours 𝑔𝑖 are provided as CSV files.

Get the directory of the current file
file_directory = "$(@__DIR__)/data"

Load the data about the available time at the bottling plant
availableTime = CSV.read("$file_directory/availabletime.csv", DataFrame)
println("Number of periods: $(nrow(availableTime))")
println("First 5 rows of available time per period:")
println(availableTime[1:5, :])

Number of periods: 27
First 5 rows of available time per period:
5×2 DataFrame
Row � period available_capacity

� String7 Int64
�����������������������������������

1 � week_01 168
2 � week_02 168
3 � week_03 168
4 � week_04 168
5 � week_05 48

1

Load the data about the bottling time for each beer
bottlingTime = CSV.read("$file_directory/bottlingtime.csv", DataFrame)
println("Number of beers: $(nrow(bottlingTime))")
println("Bottling time per beer:")
println(bottlingTime)

Number of beers: 6
Bottling time per beer:
6×2 DataFrame
Row � beer_type bottling_time

� String15 Float64
���������������������������������

1 � Pilsener 0.00222
2 � Blonde_Ale 0.00111
3 � Amber_Ale 0.00139
4 � Brown_Ale 0.00222
5 � Porter 0.00167
6 � Stout 0.00111

Load the data about the setup time for each beer
setupTime = CSV.read("$file_directory/setuptime.csv", DataFrame)
println("Setup time per beer:")
println(setupTime)

Setup time per beer:
6×2 DataFrame
Row � beer_type setup_time

� String15 Int64
������������������������������

1 � Pilsener 10
2 � Blonde_Ale 11
3 � Amber_Ale 8
4 � Brown_Ale 8
5 � Porter 11
6 � Stout 9

Load the data about the weekly demand for each beer
demandCustomers = CSV.read("$file_directory/demand.csv", DataFrame)
println("First 5 rows of demand per beer:")
println(demandCustomers[1:5, :])

First 5 rows of demand per beer:
5×3 DataFrame
Row � beer_type period demand

� String15 String7 Int64
�����������������������������������

1 � Pilsener week_01 3853
2 � Blonde_Ale week_01 8372
3 � Amber_Ale week_01 16822
4 � Brown_Ale week_01 13880
5 � Porter week_01 10642

Consider in your implementation, that each hour of setup is associated with a cost of 1000 Euros, and the
inventory holding cost for unsold bottles at the end of each period is 0.1 Euro per bottle. Implement both
parameters for the cost of setup and the inventory holding cost in the model. Call them setupHourCosts

2

and warehouseCosts.

YOUR CODE BELOW

Next, you need to prepare the given data for the model. Create a dictionary for the available time, bottling
time, and setup time. Call them dictAvailableTime, dictBottlingTime, and dictSetupTime.

Prepare the data for the model
dictDemand = Dict((row.beer_type,row.period) => row.demand for row in

eachrow(demandCustomers))↪

YOUR CODE BELOW

Validate your solution
@assert length(dictAvailableTime) == nrow(availableTime) "Available time dictionary

should have same length as input data"↪

@assert length(dictBottlingTime) == nrow(bottlingTime) "Bottling time dictionary should
have same length as input data"↪

@assert length(dictSetupTime) == nrow(setupTime) "Setup time dictionary should have same
length as input data"↪

Check that all values are positive
@assert all(v -> v > 0, values(dictAvailableTime)) "All available time values must be

positive"↪

@assert all(v -> v > 0, values(dictBottlingTime)) "All bottling time values must be
positive"↪

@assert all(v -> v > 0, values(dictSetupTime)) "All setup time values must be positive"

Check that dictionaries contain all expected keys
@assert all(p -> haskey(dictAvailableTime, p), availableTime.period) "Missing periods in

available time dictionary"↪

@assert all(b -> haskey(dictBottlingTime, b), bottlingTime.beer_type) "Missing beer types
in bottling time dictionary"↪

@assert all(b -> haskey(dictSetupTime, b), setupTime.beer_type) "Missing beer types in
setup time dictionary"↪

Next, we define the model instance for the CLSP.

Prepare the model instance
lotsizeModel = Model(HiGHS.Optimizer)
set_attribute(lotsizeModel, "presolve", "on")
set_time_limit_sec(lotsizeModel, 60.0)

Now, create your variables. Please name them productBottled for the binary variable, productQuantity for
the production quantity and WarehouseStockPeriodEnd for the warehouse stock at the end of each period.
We will use these names later in the code to plot the results.

YOUR CODE BELOW

Validate your solution
Check if variables exist in the model
@assert haskey(lotsizeModel.obj_dict, :productBottled) "productBottled variable not found

in model"↪

@assert haskey(lotsizeModel.obj_dict, :productQuantity) "productQuantity variable not
found in model"↪

3

@assert haskey(lotsizeModel.obj_dict, :WarehouseStockPeriodEnd) "WarehouseStockPeriodEnd
variable not found in model"↪

Check variable dimensions
@assert length(productBottled) == length(dictBottlingTime) * length(dictAvailableTime)

"Incorrect dimensions for productBottled"↪

@assert length(productQuantity) == length(dictBottlingTime) * length(dictAvailableTime)
"Incorrect dimensions for productQuantity"↪

@assert length(WarehouseStockPeriodEnd) == length(dictBottlingTime) *
length(dictAvailableTime) "Incorrect dimensions for WarehouseStockPeriodEnd"↪

Check variable types
@assert all(is_binary, productBottled) "productBottled must be binary variables"
@assert all(is_integer, productQuantity) == false "productQuantity must be continuous

variables"↪

@assert all(is_integer, WarehouseStockPeriodEnd) == false "WarehouseStockPeriodEnd must
be continuous variables"↪

Next, define the objective function.

YOUR CODE BELOW

Validate your solution
Check if the model has an objective
@assert objective_function(lotsizeModel) !== nothing "Model must have an objective

function"↪

Check if it's a minimization problem
@assert objective_sense(lotsizeModel) == MOI.MIN_SENSE "Objective should be minimization"

Check if the objective function contains both cost components
obj_expr = objective_function(lotsizeModel)
@assert contains(string(obj_expr), "productBottled") "Objective must include setup costs

(productBottled)"↪

@assert contains(string(obj_expr), "WarehouseStockPeriodEnd") "Objective must include
warehouse costs (WarehouseStockPeriodEnd)"↪

Now, we need to define all necessary constraints for the model. Start with the demand/inventory balance
constraint.

Tip

The first period is special, as it does not have a previous period. Furthermore, we are working with
strings as variable references, thus we cannot use t-1 directly as in the lecture. To address this,
we could collect and sort all keys and then use their indices to address the previous period. For
example, all_periods[t-1] would then be the previous period, if we index t just as a range from
2:length(all_periods).

Get the first period and all periods
first_period = first(sort(collect(keys(dictAvailableTime))))
all_periods = sort(collect(keys(dictAvailableTime)))

With these, we can now define the demand/inventory balance constraint. As this is the first constraint and
might be a bit tricky, the solution is already given below.

4

Inventory balance constraints for periods after first period
@constraint(lotsizeModel,

demandBalance[i=keys(dictBottlingTime), t=2:length(all_periods)],
WarehouseStockPeriodEnd[i,all_periods[t-1]] + productQuantity[i,all_periods[t]] -
WarehouseStockPeriodEnd[i,all_periods[t]] == dictDemand[i,all_periods[t]]↪

)

Next, we need to ensure that we setup the production for a beer type only if we bottle the type at least once.

YOUR CODE BELOW

Last, we need to define the constraint that limits the production quantity to the number of bottles that can
be bottled within the available time.

YOUR CODE BELOW

Finally, implement the solve statement for your model instance.

YOUR CODE BELOW

Validate your solution
@assert 600000 <= objective_value(lotsizeModel) <= 700000 "Objective value should be

between 600,000 and 700,000"↪

Now, unfortunately we cannot assert the value of the objective function perfectly here as we have to abort
the computation due to the time limit and everybody is likely getting different results. The solution for the
first task will likely be in the range of 600,000 to 700,000. If your model is solved within seconds, your
formulation is not correct.

The following code creates production and warehouse plots for you. Use it to verify and visualize your
solution in the following tasks.

Note

The creation of the dataframes and the plots is implemented inside of a function, as we will need to
use it multiple times in the following tasks.

Create the production results
function create_production_results()

Create a DataFrame to store the results
productionResults = DataFrame(

period = String[],
product = String[],
productBottled = Bool[],
productQuantity=Int[],
WarehouseStockPeriodEnd=Int[]

)

Populate the DataFrame with the results
for i in keys(dictSetupTime)

for t in keys(dictAvailableTime)
push!(

productionResults,(
period = t,
product = i,

5

productBottled = value(productBottled[i,t])>0.5 ? true : false,
productQuantity = ceil(Int,value(productQuantity[i,t])),
WarehouseStockPeriodEnd = ceil(Int,value(WarehouseStockPeriodEnd[i,t])),
)

)
end

end

sort!(productionResults,[:period, :product])
return productionResults

end

Create the production plot
function create_production_plot(productionResults)

p = groupedbar(
productionResults.period,
productionResults.productQuantity,
group=productionResults.product,
ylabel="Production Quantity (Bottles)",
xlabel="Period",
title="Production Schedule by Beer Type",
size=(1200,600),
palette = :Set3,
legend=:outertopright,
xrotation = 45,
legendtitle="Beer Type",
bar_width=0.7,
grid=false,
dpi=300

)
return p

end

Create the warehouse stock plot
function create_warehouse_plot(productionResults)

p = groupedbar(
productionResults.period,
productionResults.WarehouseStockPeriodEnd,
group=productionResults.product,
ylabel="Warehouse Stock",
xlabel="Period",
title="Warehouse Stock",
size=(1200,600),
palette = :Set3,
legend=:outertopright,
xrotation = 45,
legendtitle="Beer Type",
bar_width=0.7,
grid=false,
dpi=300

)
return p

end

6

The following code creates the production plot.

productionResults = create_production_results()
p = create_production_plot(productionResults)

The following code creates the warehouse stock plot.

productionResults = create_production_results()
p = create_warehouse_plot(productionResults)

Next, we calculate the setup and inventory costs for each period and store them in a DataFrame. This should
also work for you, if you followed the previous name instructions.

Calculate costs per period
function create_cost_results()

costResults = DataFrame(
period = String[],
setup_costs = Float64[],
inventory_costs = Float64[]

)

for t in sort(collect(keys(dictAvailableTime)))
Calculate setup costs for this period
period_setup_costs = sum(

setupHourCosts * dictSetupTime[i] * value(productBottled[i,t])
for i in keys(dictBottlingTime)

)

Calculate inventory costs for this period
period_inventory_costs = sum(

warehouseCosts * value(WarehouseStockPeriodEnd[i,t])
for i in keys(dictBottlingTime)

)

push!(costResults, (
period = t,
setup_costs = period_setup_costs,
inventory_costs = period_inventory_costs

))
end

Stack the cost columns
stacked_costs = stack(costResults, [:setup_costs, :inventory_costs],

variable_name="Cost_Type", value_name="Cost")
return stacked_costs

end

Create the cost plot
function create_cost_plot(stacked_costs)

p = groupedbar(
stacked_costs.period,
stacked_costs.Cost,
group=stacked_costs.Cost_Type,

7

ylabel="Costs (€)",
xlabel="Period",
title="Setup and Inventory Costs per Period",
size=(1200,600),
palette=:Set2,
legend=:outertopright,
xrotation=45,
legendtitle="Cost Type",
bar_width=0.7,
grid=false,
dpi=300

)
return p

end

The following code calls the setup and inventory costs plot.

stacked_costs = create_cost_results()
p = create_cost_plot(stacked_costs)

8

2. Initial Warehouse Stock

The model currently sets the initial warehouse stock levels without any restrictions. Modify your model to
incorporate an initial stock for all types of beer of zero at the beginning of the initial planning period.

To solve this task, you can simply extend the previousmodel by these additional constraints in the cell below.
Afterwards, you can re-run the optimization.

YOUR CODE BELOW

Validate your solution
@assert 700000 <= objective_value(lotsizeModel) <= 760000 "Objective value should be

between 700,000 and 760,000"↪

The objective value should now be higher, as the solution space is smaller than before and the initial stock
is zero for all beer types. You can check the plots for the production and warehouse stock to verify this.

productionResults = create_production_results()
p = create_production_plot(productionResults)

productionResults = create_production_results()
p = create_warehouse_plot(productionResults)

stacked_costs = create_cost_results()
p = create_cost_plot(stacked_costs)

9

3. Scheduled Repair

Unfortunately, the bottling plant has to undergo maintenance in periods "week_10" and "week_11". Extend
your model to prevent any production in those two periods.

Again, to solve this task, you can simply extend the previous model by these additional constraints in the
cell below. Afterwards, you can re-run the optimization.

YOUR CODE BELOW

Validate your solution
@assert 760000 <= objective_value(lotsizeModel) <= 800000 "Objective value should be

between 760,000 and 800,000"↪

Again, the objective value should be higher, because the solution space is smaller. You can check the plots
for the production and warehouse stock to verify whether the production is zero in the maintenance periods.

productionResults = create_production_results()
p = create_production_plot(productionResults)

productionResults = create_production_results()
p = create_warehouse_plot(productionResults)

stacked_costs = create_cost_results()
p = create_cost_plot(stacked_costs)

10

4. Production Schedule Analysis

Analyze the production schedule outlined in section 2 of this tutorial. Is the workload distributed evenly
across all time periods? Provide a rationale for your assessment.

Please answer in the following cell. Note, that #= and =# are a comment delimiter for multiline comments.
You can write whatever you want between them and the code will not be executed.

YOUR REASONING BELOW
#=

=#

Based on the production data from the final period, calculate the ending inventory levels for each type of
beer. Discuss any significant findings. Compute the ending inventory levels for each type of beer in the
following cell. You can name the DataFrame however you want.

YOUR CODE BELOW

11

5. Biannual Bottling Strategy

Reflecting on a scenario where the company schedules its bottling operations biannually using the current
method: identify and discuss potential pitfalls of this strategy.

Offer at least one actionable suggestion for enhancing the efficiency or effectiveness of the production
planning process.

Your answer goes here.

YOUR ANSWER BELOW
#=

=#

12

Solutions

You will likely find solutions to most exercises online. However, I strongly encourage you to work on these
exercises independently without searching explicitly for the exact answers to the exercises. Understanding
someone else’s solution is very different from developing your own. Use the lecture notes and try to solve
the exercises on your own. This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the concepts and improve your
programming abilities. If you encounter difficulties, review the lecture materials, experiment with different
approaches, and don’t hesitate to ask for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub repository, but we will
also quickly go over them in next week’s tutorial. To access the solutions, click on the Github button on the
lower right and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or
Claude to explain them to you. But please remember, the goal is not just to complete the exercises, but to
understand the concepts and improve your programming abilities.

13

	1. Modelling the CLSP
	2. Initial Warehouse Stock
	3. Scheduled Repair
	4. Production Schedule Analysis
	5. Biannual Bottling Strategy
	Solutions

