Tutorial IV.IIl - Constraints in JUMP
Applied Optimization with Julia

Introduction

Welcome to this tutorial on constraints in JUMP! In this lesson, we'll explore how to add rules (constraints)
to our optimization problems.

By the end of this tutorial, you'll be able to: 1. Create simple constraints for your optimization problems

2. Use containers (like arrays) to manage multiple similar constraints 3. Create more complex constraints
based on conditions

Let's start by loading the necessary packages:
using JuMP, HiGHS

Now, let's create a model that we'll use throughout this tutorial:

another_model = Model (HiGHS.Optimizer)
println("Great! We've created a new optimization model.")

Section 1 - Objective Functions with
Container Variables

Defining objective functions with variables in containers allows for scalable and dynamic model formula-
tions. First, we need a container with variables for the objective function. For example:

Ovariable (modelName, variableName[1:3] >= 0)

Now, we can define an objective function with the container. For example:

Q@objective (modelName, Max, sum(variableName[i] for i in 1:3))

Exercise 1.1 - Define arrays

Scenario: Imagine you're optimizing the production of 8 different products in a factory. Each product has a
different profit margin, and you want to maximize total profit.

Define an array of variables and an objective function for another_model. The variables should be called
profits and have a range from 1:8. It has a lower bound of 0. The objective should be a Maximization of
the sum of all profits.

YOUR CODE BELOW

Test your answer

@assert length(profits) == 8 && all(lower_bound(profits[i]) == 0 for i in 1:8)
Q@assert typeof (objective_function(another_model)) == AffExpr
println("Objective function with container variables defined successfully!")

Section 2 - Constraints within Containers

Defining constraints within containers allows for structured and easily manageable models. This is espe-
cially important when models become larger! To define a constraint within a container, we can do, for exam-
ple, the following:

@constraint (modelName,
constraintName[i in 1:3],
variableName[i] <= 100

)

This would create a constraint called constraintName for each i - thus 1,2, and 3 - where variableName[1],
variableName[2], and variableName [3] are restricted to be maximally 100.

Exercise 2.1 - Define constraints

Continuing our factory scenario: Each product has a maximum daily production capacity due to machine
limitations.

Define constraints called maxProfit using an array of variables. The logic: Each profit defined in the previous
task should be less than or equal to 12.

YOUR CODE BELOW
Test your answer

@assert all(is_valid(another_model, maxProfit[i]) for i in 1:8)
println("Constraints within containers defined successfully!")

Section 3 - Implementing Conditional
Constraints

Conditional constraints are added to the model based on certain conditions, allowing for dynamic and flexi-
ble model formulations. To define a constraint within a container under conditions, we can do the following:

@constraint (modelName,
constraintName[i in 1:3; i <= 2],
variableName[i] <= 50

This would create a constraint called constraintName for each i - thus 1,2, and 3 - where variableName[1],
variableName [2] are restricted to be maximally 50 and variableName [3] was not restricted.

Exercise 3.1 - Add a conditional constraints

Scenario extension: The first 4 products are new and have limited market demand.

Add a conditional constraint smal1Profit to the previous model. Condition: Only the first 4 variables profit
have to be lower or equalthan 5.

YOUR CODE BELOW

Test your answer
@assert all(is_valid(another_model, smallProfit[i]) for i in 1:4)
println("Conditional constraint implemented successfully!")
println("Checking successful implementation.")
optimize! (another_model)
status = termination_status(another_model)
Qassert status == MOI.OPTIMAL "Sorry, something didn't work out as the model status is
o $status"
Q@assert objective_value(another_model) 68 atol=1e-4 "Although you have an optimal
< solution,
the should be 68 not $(objective_value(another_model)). Is the model correct?"
println("Model components validated successfully!")

Visualization of Results

Let’s visualize our optimal solution:

using Plots
Assuming the model has been solved!!!
optimal_profits = value.(profits)

bar(1:8, optimal_profits,
title="0Optimal Production Levels",
xlabel="Product",
ylabel="Profit",
legend=false)

Conclusion

Congratulations! You've completed the tutorial on advanced handling of objective functions and constraints
in JUMP. You've learned how to define objective functions and constraints using container variables. Con-
tinue to the next file to learn more.

	Introduction
	Section 1 - Objective Functions with Container Variables
	Exercise 1.1 - Define arrays

	Section 2 - Constraints within Containers
	Exercise 2.1 - Define constraints
	Section 3 - Implementing Conditional Constraints
	Exercise 3.1 - Add a conditional constraints

	Visualization of Results
	Conclusion

