Lecture IX - Safety Planning for the Islamic Pilgrimage

Applied Optimization with Julia

Dr. Tobias Vlćek

Please take a moment at the start of the lecture to fill out the lecture evaluation survey. Thanks!

Introduction

Islamic Pilgrimage

Question: Have you ever heard of the Hajj?

The Hajj

- The great Islamic pilgrimage towards Mecca
- The holy city is the religious center of the Islamic religion
- Located in the Kingdom of Saudi Arabia
- Each physically able Muslim should perform Hajj once
- Confined spaces around the holy sites
- Only few million people are annually allowed

Mina Tent City

Mina Tent City

The scope of the Hajj

- Pilgrimage is actually a multi-day journey
- Involves a number of different rituals at several ritual sites
- Our efforts focused on the Rhamy-Al-Jamarat ritual

. . .

Chamy-Al-Jamarat ritual

Pilgrims throw pebbles against three pillars, which symbolize the temptations of the devil. They repeat this ritual with small variations on four consecutive days.

Mina Tent City

- 1.5–2 million people reside in the tent city
- Pilgrims repeatedly access the holy site
- Perform the Rhamy-Al-Jamarat ritual
- Walk through a network of streets and pathways
- Later proceed to the Kaaba or return to the camp

Time Preferences

- When to perform the ritual on each of the four days?
- Pilgrims have different time preferences
 - Constrained by arrival and departure shuttle times
 - Extremely hot at midday quickly leading to exhaustion
 - Traditions play an important role in time preferences

. .

Question: What could become a problem?

Risk: Overcrowding at Mina

- In aggregation, the time preferences are clustered
- Popular peak times dating back to the Prophet Mohammad
- Equates to a city-scale crowd of millions of people
- Accessing one central place within only a few hours

. . .

O Caution

Uncoordinated access within confined area can escalate into crowd disasters!

Crowd Accidents

- Historical incidents of crowd disasters
- Resulted in casualties and injuries
- High-density bottlenecks on the way to the rituals

- Several critical points of congestion
- Waiting times can lead to hazardous conditions

. . .

Question: What could we do to prevent this?

Pedestrian Traffic

How is Hajj pedestrian traffic different from the regular urban pedestrian traffic in cities?

Pedestrian Traffic

- Individuals and groups
- Multitude of destinations
- Mixing and formation
- Distractions

- Homogeneous groups
- Shared destination

- Higher densities
- Predictable

Types of Pedestrian Flow

. . .

Question: What is the most dangerous type here?

. . .

Multi-directional and intersecting flows are the most dangerous type!

Pilgrim Flows

i General idea

Adhere to one-way flow systems and define path options for each camp under consideration of a unidirectional flow system.

Problem Structure

Objective?

Question: What could be the objective?

- Minimize risk of overcrowding and accidents
- Enable ritual participation of all pilgrims
- Satisfy time preferences of pilgrims
- Easy plans to execute under pressure

. . .

Question: How can we try to model this?

Objective

- Satisfy time preferences as much as possible
- Consideration of infrastructure bottleneck flow capacities
- Maximize safety for all pilgrims
- Simple plans to make the execution as simple as possible
- This can prevent critical errors later on!

. . .

Question: Where is the goal conflict?

Goal Conflict

Basic Structure

- We follow the structure of a simple scheduling problem
- The aim is to "assign" something to different time periods
- We assign time slots to groups using different paths
- Plans are kept simpler by assigning paths to camps
- Assignments are fixed over the entire time horizon

Pilgrim Routes

Each camp has a set of feasible one-way paths that include the stoning ritual.

Path may contain one or more bottlenecks, regarded as resources subject to a capacity.

Pilgrims departure from a camp at a time \boldsymbol{x} and pass through the bottleneck later.

Our model should assign one of the feasible paths to a camp on all four ritual days.

These bottlenecks should not be overcrowded at any time during the Hajj.

How can we model time preferences?

Time Preferences

100% Pilgrim time preference fulfillment

Time preference satisfaction

- Assign one departure time slot
- Assigned per ritual day to each pilgrim group
- Minimize difference between assigned and preferred time
- Different penalty functions are possible

. . .

i Group time preferences

May be computed, i.e., down-sampled given a distribution of pilgrims over time.

Penalty Functions

Pilgrim Group Dissatisfaction (Penalty)

Fluctuations

Question: What could become a problem?

. . .

- If allowed demand between periods varies strongly, accidents are more likely to happen!
- We need keep the changes between periods within bounds

. . .

Question: Any idea how we can do that later?

. . .

• Restrict the change of the utilization between periods

Goals Summarized

- 1. Satisfy time preferences of the pilgrims as much as possible under the consideration of infrastructure bottleneck flow capacities by assigning "something" to a time slot.
- 2. For the sake of simplicity and safety, pilgrims coming from one camp will always have to be assigned the same path.
- 3. We need to keep track of the relative utilization of each resource to restrict the fluctuations between periods to ensure a safer event.

Model Formulation

Sets?
Question: What could be the sets here?

Sets

- $\ensuremath{\mathcal{T}}$ Stoning periods in ascending order, indexed by t
- $\mathcal R$ Infrastructure resources, indexed by r
- \mathcal{C} Pilgrim camps, indexed by c
- $\mathcal P$ Paths that include the stoning, indexed by p
- ${\mathcal S}$ Scheduling groups, indexed by s

. . .

But we further need subsets!

Subsets

- \mathcal{S}_c Scheduling groups in camp c
- \mathcal{S}_p Scheduling groups that can use path p
- \mathcal{P}_c Feasible paths for camp c
- $\mathcal{P}_{\!s}$ Feasible paths for group s
- \mathcal{P}_r Paths that contain the resource r
- $\mathcal{T}_{\!s}$ Available stoning periods for scheduling group s

That looks

complicated...

On Subsets

Question: Why use subsets?

. . .

- It may seem like a lot
- But it also really helps a lot!
- We reduce the problem size

. . .

A smaller problem size reduces the solution space and helps the solver in finding the optimal solution faster!

Parameters?

Question: What could be possible parameters?

. . .

- n_s Number of pilgrims in scheduling group s
- $f_{s,t}$ Penalty value of assigning period t to group s
- $a_{p,r}$ Offset between stoning and utilization period of r on p
- $b_{r,t}$ Capacity of resource r in period t
- σ_r max. relative utilization deviation between t for r

First Decision Variable?

Our first goal is to:

Satisfy time preferences of the pilgrims as much as possible under the consideration of infrastructure bottleneck flow capacities by assigning "something" to a time slot.

. . .

i We need the following sets:

- Scheduling groups, $s \in \mathcal{S}$
- Stoning periods in ascending order, $t \in \mathcal{T}$
- Paths that include the stoning of the devil, $p \in \mathcal{P}$

First Decision Variable

Question: What could be our decision variable?

. . .

• $X_{s,t,p}$ - 1, if scheduling group s is scheduled to perform stoning in period t and to use path p, 0 otherwise.

. . .

Question: Do you get the idea here?

. . .

It's a binary assignment of a group to a time slot and a path.

Second Decision Variable?

Our second goal (more a constraint):

For the sake of simplicity and safety, pilgrims coming from one camp will always have to be assigned the same path.

. . .

i We need the following sets:

- Pilgrim camps from which groups can depart, $c \in \mathcal{C}$
- Paths that include the stoning of the devil, $p \in \mathcal{P}$

. . .

Question: What could be our second variable?

Second Decision Variable

• $Y_{c,p}$ - 1, if camp c is assigned to use path p, 0 otherwise

. . .

Question: Does anyone remember the third part?

Third Decision Variable?

Our third goal (again, more a constraint):

We need to keep track of the relative utilization of each resource to restrict the fluctuations between periods to ensure a safer event.

. . .

i We need the following sets:

- Infrastructure resources, $r \in \mathcal{R}$
- Stoning periods in ascending order, $t \in \mathcal{T}$

. . .

Question: What could be our third variable?

Third Decision Variable

• $U_{r,t}$ - Relative utilization of r in t with $0 \leq U_{rt} \leq 1$

. . .

Question: What does relative utilization mean?

. . .

- It's a percentage of the capacity usage of the resource
- Normalizes the capacities between different resources

Let's start with our objective function!

Objective Function?

Our main objective is to:

Satisfy time preferences of the pilgrims as much as possible under the consideration of infrastructure bottleneck flow capacities by assigning "something" to a time slot. Hint: We thus could aim to minimize the total dissatisfaction with the timetable.

. . .

Question: How could we minimize the total dissatisfaction?

- Penalize difference between assigned and preferred time
- Different penalty functions, e.g., linear, quadratic, etc.

Objective Function

i We need the following parameters and variables:

- $f_{\boldsymbol{s},t}$ Penalty value of assigning period t to group \boldsymbol{s}
- $X_{s,t,p}$ 1 if group s is scheduled to perform stoning in t and to use p, 0 otherwise

. . .

Question: What could be our objective function?

. . .

$$\label{eq:minimize} \text{minimize} \quad \sum_{s \in \mathcal{S}} \sum_{t \in \mathcal{T}} \sum_{p \in \mathcal{P}} f_{s,t} \times X_{s,t,p}$$

Objective Function Characteristics

Question: Is our objective function linear?

. . .

- We can use non-linear penalty functions
- But still, it will always be linear

. . .

Question: Anybody an idea why?

. . .

- We can compute the penalties in advance
- Do not depend on the decision variables

Constraints

Constraints needed?

Key Constraints

Question: Which constraints do we need?

- 1. Each group must have one path assigned
- 2. Each camp must have one path assigned
- 3. Each group must have one time slot assigned
- 4. Each resource must have a capacity limit
- 5. Constraint the relative utilization between periods

Assign Paths to Camps

The goal of this constraint is to:

Assign one path to each camp over the entire time horizon.

. .

i We need the following variables:

• $Y_{c,p}$ - 1 if camp c is assigned to use path p, 0 otherwise

. . .

Question: What could be the constraint?

$$\sum_{p \in \mathcal{P}_c} Y_{c,p} = 1 \quad \forall c \in \mathcal{C}$$

Assign Time Slots to Groups?

The goal of this constraint is to:

Assign one time slot to each group over the entire time horizon using the same path we have assigned to the camp in the previous constraint.

. . .

i We need the following variables:

- $X_{s,t,p}$ 1 if group s is scheduled to perform stoning in t and to use p, 0 otherwise
- $Y_{c,p}$ 1 if camp c is assigned to use path p, 0 otherwise

. . .

Question: What could be the constraint?

Assign Time Slots to Groups

$$\sum_{t \in \mathcal{T}_{\diamond}} X_{s,t,p} = Y_{c,p} \quad \forall c \in \mathcal{C}, p \in \mathcal{P}_{c}, s \in \mathcal{S}_{c}$$

. . .

i We use the following sets:

- \mathcal{C} Pilgrim camps
- \mathcal{S}_c Scheduling groups in camp c
- $\mathcal{T}_{\!s}$ Available stoning periods for scheduling group s
- \mathcal{P}_c Feasible paths for camp c

Relative Utilization and Capacities

The goal of this constraint is to:

Compute the relative utilization of each resource while also ensuring that the utilization does not exceed the capacity limit. This one is very tricky!

. . .

Difficulties:

- Includes the time-shift between stoning and utilization
- Used as parameter to shift periods in variable $X_{s,t,p}$

Compute Relative Utilization?

i We need the following:

- ullet n_s Number of pilgrims in scheduling group s
- $a_{p,r}$ Period offset between stoning period and utilization period of r on p
- $b_{r,t}$ Capacity of resource r in period t in number of pilgrims
- $X_{s,t,p}$ 1, if s is scheduled to perform stoning in t and to use p, 0 else
- $U_{r,t}$ Relative utilization of resource r in period t with $0 \leq U_{r,t} \leq 1$

. . .

Question: What could be the constraint?

Compute Relative Utilization

$$\sum_{p \in \mathcal{P}_r} \sum_{s \in S_p} n_s \times X_{s,t-a_{p,r},p} = b_{r,t} \times U_{r,t} \quad \forall r \in \mathcal{R}, t \in \mathcal{T}$$

. . .

i We use the following:

- n_s Number of pilgrims in scheduling group s
- $a_{p,r}$ Period offset between stoning period and utilization period of r on p
- $b_{r,t}$ Capacity of resource r in period t in number of pilgrims
- $X_{s,t,p}$ 1, if s is scheduled to perform stoning in t and to use p, 0 else
- $U_{r,t}$ Relative utilization of resource r in period t with $0 \leq U_{r,t} \leq 1$

Let's pause!

Have you understood

this part?

How does the shift work?

Keep Fluctuations within Bounds?

The goal of this constraint is to:

Keep the relative utilization of each resource within bounds to ensure a safer event.

. . .

i We need the following:

- σ_r max. relative utilization deviation between t for r
- $U_{r,t}$ Relative utilization of resource r in period t with $0 \leq U_{rt} \leq 1$

• • •

Question: What could be the constraint?

Keep Fluctuations within Bounds

$$U_{r,t} - U_{r,t-1} \leq \sigma_r \quad \forall (r,t) \in |\mathcal{R} \times \mathcal{T}|$$

$$U_{r,t-1} - U_{r,t} \leq \sigma_r \quad \forall (r,t) \in |\mathcal{R} \times \mathcal{T}|$$

. . .

Question: Can somebody explain why this works?

- Each constraint limits the change
- The first one limits the increase
- The second one limits the decrease

Scheduling Problem I subject to:

Scheduling Problem II

i Note

Restricting the relative utilization of each resource to a certain bound.

Scheduling Problem III

i Note

All variables, except for $U_{r,t}$, are binary.

Model Characteristics

Characteristics

Questions: On model characteristics

- Is the model formulation linear/ non-linear?
- What kind of variable domains do we have?
- Have we specified the length of a period?

Model Assumptions

Questions: On model assumptions

- What assumptions have we made?
- What are likely issues that can arise if applied?
- How can we measure flow capacities?
- Are all pilgrims equally fast?

Capacity Buffers

Implementation and Impact

Can this be applied?

100% Pilgrim time preference fulfillment

Desired vs. Scheduled Flow at Resource

Implementation

- Optimization part of a bigger picture
- Many projects with several disciplines involved
- E.g. Simulations, infrastructure projects, real-time monitoring, contingency plans, awareness campaigns, ...

. . .

i Note

Optimization was part of a project by Knut Haase and his team [1].

His Excellency, Dep. Minister Habib Zain Al-Abideen presenting at informs Analytics 2015

Wrap Up

i And that's it for todays lecture!

We now have covered a scheduling problem based on a real-world application and are ready to start solving some new tasks in the upcoming tutorial.

Questions?

Literature

Literature I

For more interesting literature to learn more about Julia, take a look at the literature list of this course.

Literature II

Bibliography

[1] K. Haase et al., "Improving pilgrim safety during the hajj: an analytical and operational research approach," Interfaces, vol. 46, no. 1, pp. 74–90, 2016.