
Lecture VI - Minimizing Split Orders in E-Com-
merce

Applied Optimization with Julia

Dr. Tobias Vl�ć ek

Introduction

E-Commerce Trends
Question: What are �urrent trends in e-�ommer�e?

E-Commerce Sales
• E-Commer�e sales are growing fast:
‣ Produ�ts are no longer bound between borders
‣ Produ�t variety is rising
‣ Consumer shopping patterns are shifting
‣ Bri�k-and-mortar stores loose �ustomers to the internet
‣ Covid-19 a��elerated this trend even more

Parcels Worldwide
• The number of par�els is rising:
‣ 2014: 44 billion par�els [1]
‣ 2019: 103 billion par�els [2]
‣ 2026: 220 – 262 billion par�els¹ [3]

Pressure on infrastructure

¹Fore�ast, not a�tual number
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• Consumers nowadays expe�t free and fast deliveries and returns
• Existing warehouses have to store an in�reasing range of produ�ts
• Better �ustomer servi�e requires faster deliveries
• In�urred fulfillment �osts depend on the number of par�els

Pressure on the environment
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• Ea�h par�el pa�kaging �onsumes resour�es during produ�tion
• Every dispat�hed par�el to the �ustomer �auses CO₂ emissions
• In �ase of returns, more par�els �ause more emissions

Problem Structure

Split Order
Question: What is a split order?

. . .
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No Split Order

Reason for Split Orders
Question: Why might they o��ur?

. . .

• Sto�k availability: Some produ�ts are out of sto�k at a warehouse and need to be
fulfilled from another warehouse

• Capa�ity �onstraints: Some produ�ts are stored at different warehouses and need to
be shipped from elsewhere

Impact of Split Orders
Question: What are the �onsequen�es?

. . .

• Higher shipping �osts
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• In�reased pa�kaging material
• More CO₂ emissions
• Higher operational �omplexity
• Lower �ustomer satisfa�tion

Mitigations?
Question: What are possible mitigations?

. . .

• Consolidation: Ship to a �entral warehouse before dispat�h
• Cross-do�king: Ship dire�tly from supplier to �ustomer
• Transshipment: Ship between warehouses before delivery
• Co-allo�ation: Predi�t �o-appearan�e of produ�ts and allo�ate them to the same

warehouse

Case Study
Key information about the �ase:

• a large European e-�ommer�e retailer
• the retailer has two warehouses
• produ�t range �annot be stored in either warehouse
• produ�t deliveries �an be made to both warehouses
• produ�ts do not have to be stored ex�lusively

Problem Structure - Version 1

Optimizing Co-allocation
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Question: What �ould be our obje�tive?

We aim to improve the SKU²-warehouse allo�ation to minimize the number of split
par�els resulting from SKUs being stored in different warehouses.

Available Sets
Question: What �ould be the sets here?

. . .

• ℐ - Set of produ�ts indexed by 𝑖 ∈ {1, 2, ..., |ℐ|}
• 𝒦 - Set of warehouses indexed by 𝑘 ∈ {1, …, |𝒦|}
• ℳ - Set of �ustomer orders 𝑚 ∈ {1, 2, ..., |ℳ|}

Available Parameters
Question: What are possible parameters?

. . .

• 𝑐𝑘 - Storage spa�e of warehouse 𝑘 ∈ {1, …, |𝒦|}
• 𝑻 = (𝑡𝑚,𝑖) - Past �ustomer orders for SKUs

²SKU: Sto�k Keeping Unit
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. . .

Question: What �ould the transa�tional data look like?

Transactional Data

𝑡𝑚,𝑖 A B C D

1 1 1 1 0

2 1 1 1 0

3 1 1 0 0

4 1 0 0 1

5 1 0 0 1

6 1 0 0 1

7 1 0 0 1

8 0 0 1 1

Past vs. Future
• The transa�tional data 𝑻  is based on past orders
• It is a binary matrix of �ustomer orders and SKUs
• We use this data to assume future �o-o��urren�e
‣ Past �o-o��urren�e predi�ts future �o-o��urren�e

. . .

Question: What is your opinion on the assumption?

Split-Order Minimization
Question: What �ould be our de�ision variable/s?

. . .

 We have the following sets:

• ℐ - Set of produ�ts indexed by 𝑖 ∈ {1, 2, ..., |ℐ|}
• 𝒦 - Set of warehouses indexed by 𝑘 ∈ {1, …, |𝒦|}
• ℳ - Set of �ustomer orders 𝑚 ∈ {1, 2, ..., |ℳ|}

. . .

• 𝑋𝑖,𝑘 - 1, if 𝑖 ∈ ℐ is stored in 𝑘 ∈ 𝒦, 0 otherwise
• 𝑌𝑚,𝑖,𝑘 - 1, if SKU 𝑖 ∈ ℐ is shipped from warehouse 𝑘 ∈ 𝒦 for �ustomer order 𝑚 ∈ ℳ,

0 otherwise

Integer Programming Model
• A. Catalán and M. Fisher [4] �reated an integer model

7



• Number of SKUs of E-Commer�e retailers �an easily be between 10,000 - 100,000
• Number of �ustomer orders ne�essary for “stable” results have to be higher in the

order of 100,000 - 10,000,000

. . .

Question: Anybody an idea what this �ould mean?

Implementation Challenges
• Small instan�e with 10 SKUs and 1000 �ustomer orders
• CPLEX 20.1.0 needs 3100 se�onds to solve the problem
• Computation times s�ales exponentially
• → Not appli�able in real world appli�ations!

Any idea what

�ould be done?

Problem Structure - Version 2

Heuristic Approach
• Heuristi�: Fast, but not ne�essarily optimal
• Approximation: Not guaranteed to be optimal, but �lose
• Computational Effort: Reasonable even for large instan�es

. . .

 Different view on the problem

Fo�us on the warehouses and the �o-appearan�e of SKUs! Dis�ard the exa�t infor-
mation about the �ustomer orders.

Objective
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Question: What �ould be the obje�tive?

Maximize the �oappearan�e of produ�ts that are often part of the same �ustomer
orders.

Transaction Matrix

T = [
    1 1 1 0;
    1 1 1 0;
    1 1 0 0;
    1 0 0 1;
    1 0 0 1;
    1 0 0 1;
    1 0 0 1;
    0 0 1 1
]

# Create the coappearance matrix
Q = T' * T
println("Coappearance matrix Q:")
display(Q)

Coappearance matrix Q:

4×4 Matrix{Int64}:
 7  3  2  4
 3  3  2  0
 2  2  3  1
 4  0  1  5
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Coappearance Matrix
• 𝑸 is a symmetri� matrix
• Proposed by A. Catalán and M. Fisher [4]
• 𝑸 = (𝑻 𝑇 ⋅ 𝑻 ) where 𝑸 = (𝑞𝑖𝑗)𝑖∈{1,…,ℐ},𝑗∈{1,…,ℐ}
• 𝑞𝑖𝑗 shows how often 𝑖 and 𝑗 appear in the same order

. . .

Question: What do the prin�ipal diagonal values tell us?

. . .

• How often ea�h SKU appeared over all orders (binary!)

How to approach the problem?
• Greedy Heuristi�³: Allo�ation based on matrix
• Mathemati�al Model4: Maximizes �oappearan�e
• GRASP5: Good on small instan�es
• New: Max. �oappearan�e with non-linear solver
• New: Heuristi� based on Chi-Square Tests

Basic Setting

Available Data (Version 2)
Question: What �ould be the sets?

. . .

³Simple and very fast, A. Catalán and M. Fisher [4]
4Computationally intensive with CPLEX, S. Zhu, X. Hu, K. Huang, and Y. Yuan [5]
5Greedy Randomized Adaptive Sear�h Pro�edure, S. Zhu, X. Hu, K. Huang, and Y. Yuan [5]
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• ℐ - Set of produ�ts indexed by 𝑖 ∈ {1, 2, ..., |ℐ|}
• 𝒦 - Set of warehouses indexed by 𝑘 ∈ {1, …, |𝒦|}

. . .

! No �ustomer order information is needed!

We �an fo�us on the SKUs and the warehouses, making the problem mu�h smaller!

Available Parameters
Question: What are possible parameters?

• 𝑐𝑘 - Storage spa�e of warehouse 𝑘 ∈ {1, …, |𝒦|}
• 𝑸 = (𝑞𝑖𝑗)𝑖∈{1,…,ℐ},𝑗∈{1,…,ℐ}

 - Coappearan�e matrix

. . .

! Transa�tional Data repla�ed

Instead of the transa�tional data, we just use the �oappearan�e matrix in our model!

Model Formulation

Decision Variables?

 We have the following sets:

• ℐ - Set of produ�ts indexed by 𝑖 ∈ {1, 2, ..., |ℐ|}
• 𝒦 - Set of warehouses indexed by 𝑘 ∈ {1, …, |𝒦|}

. . .

! Our obje�tive is to:

Maximize the �oappearan�e of produ�ts that are often part of the same �ustomer
orders. In more mathemati�al terms: Maximize the sum of all unique pair-wise
values 𝑞𝑖,𝑗 of all SKUs stored in the same warehouse.

. . .

Question: What �ould be our de�ision variable/s?

Decision Variables
• 𝑋𝑖,𝑘 - 1, if SKU 𝑖 ∈ ℐ is stored in 𝑘 ∈ 𝒦, 0 otherwise

. . .
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! Only one variable per SKU and warehouse!

As we don’t need the �ustomer order information, we only need to make a de�ision
for ea�h SKU and warehouse pair!

Decision Variable in Julia
Question: How �ould we formulate the variable in Julia?

import Pkg; Pkg.add("SCIP")
using JuMP, SCIP # SCIP is a non-commercial MIQCP solver

warehouses = ["Hamburg", "Berlin"] # Add warehouses as a vector
skus = ["Smartphone", "Socks", "Charger"] # Add SKUs as a vector

warehouse_model = Model(SCIP.Optimizer)

. . .

@variable(warehouse_model, X[i in skus, k in warehouses], Bin)

2-dimensional DenseAxisArray{VariableRef,2,...} with index sets:
    Dimension 1, ["Smartphone", "Socks", "Charger"]
    Dimension 2, ["Hamburg", "Berlin"]
And data, a 3×2 Matrix{VariableRef}:
 X[Smartphone,Hamburg]  X[Smartphone,Berlin]
 X[Socks,Hamburg]       X[Socks,Berlin]
 X[Charger,Hamburg]     X[Charger,Berlin]

Objective Function

 We need the following:

• 𝑋𝑖,𝑘 - 1, if SKU 𝑖 ∈ ℐ is stored in 𝑘 ∈ 𝒦, 0 otherwise
• 𝑞𝑖𝑗 - Coappearan�e of SKU 𝑖 ∈ ℐ and 𝑗 ∈ ℐ

! Our obje�tive is to:

Maximize the sum of all unique pair-wise values 𝑞𝑖,𝑗 of all SKUs stored in the same
warehouse. Note, that this is a quadrati� obje�tive fun�tion!

. . .

Question: What �ould the obje�tive fun�tion look like?

. . .
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Quadratic Objective Function

maximize ∑
ℐ

𝑖=2
∑
𝑖−1

𝑗=1
∑
𝑘∈𝒦

𝑋𝑖𝑘 × 𝑋𝑗𝑘 × 𝑞𝑖𝑗

. . .

 This is a quadrati� obje�tive fun�tion!

The quadrati� terms are 𝑋𝑖𝑘 × 𝑋𝑗𝑘. This obje�tive fun�tion is based on the Qua-
drati� Multiple Knapsa�k Problem (QMKP), formulated by A. Hiley and B. A. Julstrom
[6].

Objective Function in Julia
Question: How �ould we formulate this in Julia?

. . .

Q = [2 1 2; 1 2 1; 2 1 2]

@objective(warehouse_model,
    Max,
    sum(
        X[skus[i], warehouses[k]] * X[skus[j], warehouses[k]] * Q[i,j]
        for i in 2:length(skus)
        for j in 1:i-1
        for k in 1:length(warehouses)
    )
)

$ X_{So�ks,Hamburg}X_{Smartphone,Hamburg} + X_{So�ks,Berlin}X_{Smart-
phone,Berlin} + 2 X_{Charger,Hamburg}X_{Smartphone,Hamburg} + 2
X_{Charger,Berlin}X_{Smartphone,Berlin} + X_{Charger,Hamburg}X_{So�ks,Hamburg}
+ X_{Charger,Berlin}X_{So�ks,Berlin} $

Constraints

What constraints?
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Question: What �onstraints?

• Allo�ate ea�h SKU at least on�e
• Warehouses have a finite �apa�ity
• Capa�ity is not ex�eeded

Single Allocation Constraint?

! The goal of this �onstraint is to:

Ensure that ea�h SKU is allo�ated at least on�e.

. . .

 We need the following variable:

• 𝑋𝑖,𝑘 - 1, if SKU 𝑖 ∈ ℐ is stored in 𝑘 ∈ 𝒦, 0 otherwise

. . .

Question: What �ould the �onstraint look like?

Single Allocation Constraint
∑
𝑘∈𝒦

𝑋𝑖𝑘 ≥ 1 ∀𝑖 ∈ ℐ

. . .

14



 Remember, this is the variable:

• 𝑋𝑖,𝑘 - 1, if SKU 𝑖 ∈ ℐ is stored in 𝑘 ∈ 𝒦, 0 otherwise

. . .

Question: How �ould we �hange the �onstraint to ensure that ea�h SKU is allo�ated
only on�e?

. . .

Question: How �ould we add the �onstraint in Julia?

Single Allocation in Julia

@constraint(warehouse_model, single_allocation[i in skus],
    sum(X[i, k] for k in warehouses) >= 1
)

1-dimensional DenseAxisArray{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.GreaterThan{Float64}}, ScalarShape},1,...} with index
sets:
    Dimension 1, ["Smartphone", "Socks", "Charger"]
And data, a 3-element Vector{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.GreaterThan{Float64}}, ScalarShape}}:
 single_allocation[Smartphone] : X[Smartphone,Hamburg] +
X[Smartphone,Berlin] ≥ 1
 single_allocation[Socks] : X[Socks,Hamburg] + X[Socks,Berlin] ≥ 1
 single_allocation[Charger] : X[Charger,Hamburg] + X[Charger,Berlin] ≥ 1

Capacity Constraints?

! The goal of these �onstraints is to:

Ensure that the �apa�ity of ea�h warehouse is not ex�eeded.

. . .

 We need the following variables and parameters:

• 𝑋𝑖,𝑘 - 1, if SKU 𝑖 ∈ ℐ is stored in 𝑘 ∈ 𝒦, 0 otherwise
• 𝑐𝑘 - Storage spa�e of warehouse 𝑘 ∈ 𝒦

. . .

Question: What �ould the se�ond �onstraint be?
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Capacity Constraints
∑
𝑖∈ℐ

𝑋𝑖𝑘 ≤ 𝑐𝑘 ∀𝑘 ∈ 𝒦

. . .

And that’s basi�ally it!

. . .

Question: How �ould we add the se�ond �onstraint in Julia?

Capacity Constraints in Julia

capacities = Dict("Hamburg" => 2, "Berlin" => 1) # Add capacities

@constraint(warehouse_model, capacity[k in warehouses],
    sum(X[i, k] for i in skus) <= capacities[k]
)

1-dimensional DenseAxisArray{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape},1,...} with index sets:
    Dimension 1, ["Hamburg", "Berlin"]
And data, a 2-element Vector{ConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64},
MathOptInterface.LessThan{Float64}}, ScalarShape}}:
 capacity[Hamburg] : X[Smartphone,Hamburg] + X[Socks,Hamburg] +
X[Charger,Hamburg] ≤ 2
 capacity[Berlin] : X[Smartphone,Berlin] + X[Socks,Berlin] +
X[Charger,Berlin] ≤ 1

QMK Model

maximize ∑
ℐ

𝑖=2
∑
𝑖−1

𝑗=1
∑
𝑘∈𝒦

𝑋𝑖𝑘 × 𝑋𝑗𝑘 × 𝑞𝑖𝑗

subje�t to:

∑
𝑘∈𝒦

𝑋𝑖𝑘 ≥ 1 ∀𝑖 ∈ ℐ

∑
𝑖∈ℐ

𝑋𝑖𝑘 ≤ 𝑐𝑘∀𝑘 ∈ 𝒦

𝑋𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ ℐ, ∀𝑘 ∈ 𝒦

QMK Model in Julia

set_attribute(warehouse_model, "display/verblevel", 0) # Hide solver output
optimize!(warehouse_model)

println("The optimal objective value is: ",
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objective_value(warehouse_model))
println("The optimal solution is: ", value.(X))

The optimal objective value is: 2.0
The optimal solution is: 2-dimensional DenseAxisArray{Float64,2,...} with
index sets:
    Dimension 1, ["Smartphone", "Socks", "Charger"]
    Dimension 2, ["Hamburg", "Berlin"]
And data, a 3×2 Matrix{Float64}:
  1.0  0.0
 -0.0  1.0
  1.0  0.0

Model Characteristics

Characteristics
• Is the model formulation linear/ non-linear?
• What kind of variable domain do we have?
• Do we know the split-orders based on the obje�tive value?
• Why �ouldn’t we use HiGHS as solver?

Choosing a solver
• Identify problem stru�ture, e.g. LP, MIP, NLP, QCP, MIQCP, …
• What is the size of the problem?
• Is a �ommer�ial solver needed?

. . .

 Commer�ial Solvers

Commer�ial solvers are faster and more robust as open sour�e solvers but also
more expensive. During your studies, you �an use most of them for free though!
Nonetheless, we will only use open sour�e solvers in this �ourse.
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Global vs Local Optimality

Figure 1:  Lo�al vs Global Optimum by Christoph Roser

Model Assumptions
Questions: On model assumptions

• What assumptions have we made?
• Problem with allo�ating SKUs to multiple warehouses?
• What else might pose a problem in the real world?

Impact

Can this be

applied?

Problem Size is Crucial
• Up to 10,000 SKUs → �ommer�ial solvers
• More than 10,000 SKUs → heuristi�s
• For example, the CHI heuristi�

. . .

 CHI-Heuristi�

Dete�t dependen�ies between produ�ts and allo�ate them a��ordingly, as prod-
u�ts within orders �an have dependen�ies and produ�ts are bought with different
frequen�ies!
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Case Study
• More than 100,000 SKUs and several millions of orders
• Comparison of different heuristi�s6

‣ CHI: based on Chi-Square tests T. Vl�ć ek and G. Voigt [7]
‣ GP, GO, GS, BS: based on greedy algorithms [4]
‣ RA: Random allo�ation of SKUs to warehouses

Real Data Set

Conclusion
• Splits are of no benefit, ex�ept faster �ustomer deliveries
• In�rease workload, pa�kaging and shipping �osts
• Mathemati�al Optimisation of “full” problem not solvable
• CHI Heuristi� �lose to mathemati�al optimisation

 And that’s it for todays le�ture!

We now have �overed the Quadrati� Multiple Knapsa�k Problem and are ready to
start solving some tasks in the up�oming tutorial.

Questions?

Literature

Literature I
For more interesting literature to learn more about Julia, take a look at the literature
list of this �ourse.

6QMKP is not appli�able for instan�e in �ase study
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