Lecture VI - Minimizing Split Orders in E-Com-
merce

Applied Optimization with Julia

Dr. Tobias VIéek

Introduction

E-Commerce Trends
Question: What are current trends in e-commerce?

E-Commerce Sales
o E-Commerce sales are growing fast:

» Products are no longer bound between borders

» Product variety is rising

» Consumer shopping patterns are shifting

» Brick-and-mortar stores loose customers to the internet
Covid-19 accelerated this trend even more
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Parcels Worldwide
» The number of parcels is rising:
» 2014: 44 billion parcels [1]
» 2019: 103 billion parcels [2]
» 2026: 220 - 262 billion parcels’ [3]

Pressure on infrastructure

"Forecast, not actual number
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Reviews

« Consumers nowadays expect free and fast deliveries and returns
Existing warehouses have to store an increasing range of products
Better customer service requires faster deliveries

Incurred fulfillment costs depend on the number of parcels

Pressure on the environment
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» Each parcel packaging consumes resources during production
« Every dispatched parcel to the customer causes CO, emissions
« In case of returns, more parcels cause more emissions

Problem Structure
Split Order

Question: What is a split order?
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Reason for Split Orders

Question: Why might they occur?

« Stock availability: Some products are out of stock at a warehouse and need to be
fulfilled from another warehouse

» Capacity constraints: Some products are stored at different warehouses and need to
be shipped from elsewhere

Impact of Split Orders
Question: What are the consequences?

« Higher shipping costs



« Increased packaging material
o More CO, emissions

Higher operational complexity
» Lower customer satisfaction

Mitigations?
Question: What are possible mitigations?

Consolidation: Ship to a central warehouse before dispatch

Cross-docking: Ship directly from supplier to customer

Transshipment: Ship between warehouses before delivery

Co-allocation: Predict co-appearance of products and allocate them to the same
warehouse

Case Study

Key information about the case:

« alarge European e-commerce retailer

the retailer has two warehouses

« product range cannot be stored in either warehouse
product deliveries can be made to both warehouses
products do not have to be stored exclusively

Problem Structure - Version 1

Optimizing Co-allocation
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Question: What could be our objective?

We aim to improve the SKU%-warehouse allocation to minimize the number of split
parcels resulting from SKUs being stored in different warehouses.

Available Sets
Question: What could be the sets here?

« J - Set of products indexed by i € {1,2,...,|7|}
« X - Set of warehouses indexed by k € {1, ..., |X|}
o M - Set of customer orders m € {1,2, ..., |M|}

Available Parameters
Question: What are possible parameters?

* ¢, - Storage space of warehouse k € {1, ..., | X[}
e T = (t,,,) - Past customer orders for SKUs

2SKU: Stock Keeping Unit



Question: What could the transactional data look like?

Transactional Data

tm; A B C D

1 1 1 1 O
2 1 1 1 O
3 1 1 0 O
4 1 0 0 1
5 1 0 0 1
6 1 0 0 1
7 1 0 0 1
8 O 0 1 1

Past vs. Future
» The transactional data T' is based on past orders
o Itis a binary matrix of customer orders and SKUs
» We use this data to assume future co-occurrence
» Past co-occurrence predicts future co-occurrence

Question: What is your opinion on the assumption?

Split-Order Minimization
Question: What could be our decision variable/s?

1 We have the following sets:

« J - Set of products indexed by i € {1,2,...,|7|}
« X - Set of warehouses indexed by k € {1, ..., |X|}
o M - Set of customer orders m € {1,2, ..., | M|}

« X, -1, if i € Jisstoredin k € X, O otherwise
« Y, .- 1if SKUi € J is shipped from warehouse k € X for customer order m € M,
O otherwise

Integer Programming Model
« A. Cataldn and M. Fisher [4] created an integer model



« Number of SKUs of E-Commerce retailers can easily be between 10,000 - 100,000
« Number of customer orders necessary for “stable” results have to be higher in the
order of 100,000 - 10,000,000

Question: Anybody an idea what this could mean?

Implementation Challenges

« Small instance with 10 SKUs and 1000 customer orders
CPLEX 20.1.0 needs 3100 seconds to solve the problem
Computation times scales exponentially

— Not applicable in real world applications!

Any idea what

could be done?

Problem Structure - Version 2

Heuristic Approach

« Heuristic: Fast, but not necessarily optimal

» Approximation: Not guaranteed to be optimal, but close

« Computational Effort: Reasonable even for large instances

Different view on the problem

Focus on the warehouses and the co-appearance of SKUs! Discard the exact infor-
mation about the customer orders.

Objective
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Question: What could be the objective?

Maximize the coappearance of products that are often part of the same customer
orders.

Transaction Matrix

T =

ORRRRRRERM
PO O®O®®R R, R
PO OO®O®® R R
PRPPRPPRPPROOO

# Create the coappearance matrix
Q=T *T
println("Coappearance matrix Q:")
display(Q)

Coappearance matrix Q:

4x4 MatrixsInt64%:
7 3 2 4

3 3 2 0
2 2 3 1
4 06 1 5



Coappearance Matrix

e @ is a symmetric matrix
 Proposed by A. Catalédn and M. Fisher [4]

L] pr— T . = ..
Q (T T) where @ <q”)ie{l,...,i},je{l,...,ﬂ}
* ¢;; shows how often i and j appear in the same order

Question: What do the principal diagonal values tell us?

« How often each SKU appeared over all orders (binary!)

How to approach the problem?

« Greedy Heuristic®: Allocation based on matrix

« Mathematical Model*: Maximizes coappearance
o GRASP®: Good on small instances

« New: Max. coappearance with non-linear solver
« New: Heuristic based on Chi-Square Tests

Basic Setting

Jals

SKU i Warehouse k

Available Data (Version 2)
Question: What could be the sets?

3Simple and very fast, A. Catalan and M. Fisher [4]
4Computationally intensive with CPLEX, S. Zhu, X. Hu, K. Huang, and Y. Yuan [5]
5Greedy Randomized Adaptive Search Procedure, S. Zhu, X. Hu, K. Huang, and Y. Yuan [5]
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« J - Set of products indexed by i € {1,2,...,|7|}
« X - Set of warehouses indexed by k € {1, ..., |X|}

I No customer order information is needed!

We can focus on the SKUs and the warehouses, making the problem much smaller!

Available Parameters
Question: What are possible parameters?

* ¢, - Storage space of warehouse k € {1, ..., | X|}

Q= (qij)iG{l,...,J},je{l,...,j} - Coappearance matrix

| Transactional Data replaced

Instead of the transactional data, we just use the coappearance matrix in our model!

Model Formulation

Decision Variables?

1 We have the following sets:

« J - Set of products indexed by i € {1,2,...,|7|}
o X - Set of warehouses indexed by k € {1, ..., |X|}

| Our objective is to:

Maximize the coappearance of products that are often part of the same customer
orders. In more mathematical terms: Maximize the sum of all unique pair-wise
values g, ; of all SKUs stored in the same warehouse.

Question: What could be our decision variable/s?

Decision Variables
e X; 1 -1ifSKUi € Jisstoredin k € X, O otherwise

n



| Only one variable per SKU and warehouse!

As we don’t need the customer order information, we only need to make a decision
for each SKU and warehouse pair!

Decision Variable in Julia
Question: How could we formulate the variable in Julia?

import Pkg; Pkg.add("SCIP")
using JuMP, SCIP # SCIP is a non-commercial MIQCP solver

warehouses = ["Hamburg", "Berlin"] # Add warehouses as a vector
skus = ["Smartphone", "Socks", "Charger"] # Add SKUs as a vector

warehouse_model = Model(SCIP.Optimizer)

@variable(warehouse_model, X[i in skus, k in warehouses], Bin)

2-dimensional DenseAxisArraysVariableRef,2,...% with index sets:
Dimension 1, ["Smartphone", "Socks", "Charger"]
Dimension 2, ["Hamburg", "Berlin"]
And data, a 3x2 Matrixf{VariableRef?:
X[Smartphone,Hamburg] X[Smartphone,Berlin]
X[Socks,Hamburg] X[Socks,Berlin]
X[Charger,Hamburg] X[Charger,Berlin]

Objective Function

1 We need the following:

* X, -1ifSKUi € Jis stored in k € X, O otherwise
* g;; - Coappearance of SKUi € Jand j € J

| Our objective is to:

Maximize the sum of all unique pair-wise values g, ; of all SKUs stored in the same
warehouse. Note, that this is a quadratic objective function!

Question: What could the objective function look like?
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Quadratic Objective Function
J -1

maximize Z Z Z Xik X X X g5

i=2 j=1 ke X

1 This is a quadratic objective function!

The quadratic terms are X, x X ;. This objective function is based on the Qua-
dratic Multiple Knapsack Problem (QMKP), formulated by A. Hiley and B. A. Julstrom
[6].

Objective Function in Julia
Question: How could we formulate this in Julia?

Q=[212;121; 21 2]

@objective(warehouse_model,
Max,
sum(
X[skus[i], warehouses[k]] * X[skus[j], warehouses[k]] * Q[i,j]
for i in 2:length(skus)
for j in 1:i-1
for k in 1:length(warehouses)

$ X {Socks,Hamburg}X_{Smartphone,Hamburg} +  X_{Socks,Berlin}X_{Smart-
phone,Berlin} + 2  X_{Charger,Hamburg}X_{Smartphone,Hamburg} + 2
X_{Charger,Berlin}X_{Smartphone,Berlin} + X_{Charger,Hamburg}X_{Socks,Hamburg}
+ X_{Charger,Berlin}X_{Socks,Berlin} $

Constraints

What constraints?

13



SKU i Warehouse k

Question: What constraints?

« Allocate each SKU at least once
» Warehouses have a finite capacity
« Capacity is not exceeded

Single Allocation Constraint?

| The goal of this constraint is to:

Ensure that each SKU is allocated at least once.

1 We need the following variable:

o X, -1, if SKU ¢ € 7 is stored in k € X, O otherwise

Question: What could the constraint look like?

Single Allocation Constraint

Y Xy >1 Vied
keX
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1 Remember, this is the variable:

e X;rn-1, if SKU ¢ € 7 is stored in k € X, O otherwise

Question: How could we change the constraint to ensure that each SKU is allocated
only once?

Question: How could we add the constraint in Julia?

Single Allocation in Julia

@constraint(warehouse_model, single_allocation[i in skus],
sum(X[i, k] for k in warehouses) >= 1

)

1-dimensional DenseAxisArraysConstraintRef{Model,
MathOptInterface.ConstraintIndexf{MathOptInterface.ScalarAffineFunction{Float64?,
MathOptInterface.GreaterThan{Floaté4%*%, ScalarShape?,1,...% with index
sets:
Dimension 1, ["Smartphone", "Socks", "Charger"]
And data, a 3-element VectorsConstraintRef{Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Floaté4},
MathOptInterface.GreaterThan{Float64%}, ScalarShape}::
single_allocation[Smartphone] : X[Smartphone,Hamburg] +
X[Smartphone,Berlin] > 1
single_allocation[Socks] : X[Socks,Hamburg] + X[Socks,Berlin] = 1
single_allocation[Charger] : X[Charger,Hamburg] + X[Charger,Berlin] = 1

Capacity Constraints?

| The goal of these constraints is to:

Ensure that the capacity of each warehouse is not exceeded.

1 We need the following variables and parameters:

e X, -1ifSKUi € Jisstoredin k € X, O otherwise
* ¢, - Storage space of warehouse k € X

Question: What could the second constraint be?

15



Capacity Constraints
d Xy <c VEEX

eJ
And that’s basically it!

Question: How could we add the second constraint in Julia?

Capacity Constraints in Julia
capacities = Dict("Hamburg" => 2, "Berlin" => 1) # Add capacities

@constraint(warehouse_model, capacity[k in warehouses],
sum(X[i, k] for i in skus) <= capacities[k]

)

1-dimensional DenseAxisArraysConstraintRef$Model,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Floaté4},
MathOptInterface.LessThan{Float64%%, ScalarShape?,1,...3% with index sets:
Dimension 1, ["Hamburg", "Berlin"]

And data, a 2-element VectorsConstraintRefiModel,
MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunctionsFloaté4?,
MathOptInterface.LessThan{Float64%%, ScalarShape?::

capacity[Hamburg] : X[Smartphone,Hamburg] + X[Socks,Hamburg] +
X[Charger,Hamburg] < 2

capacity[Berlin] : X[Smartphone,Berlin] + X[Socks,Berlin] +
X[Charger,Berlin] < 1

QMK Model
J i—1
maximize Z Xik X Xji X q;5
i=2 j=1 keX
subject to:
> Xy >1vies
keX
Y Xy <gVkeX
ieJ
X, €{0,1}Vie I, Vke X
QMK Model in Julia

set_attribute(warehouse_model, "display/verblevel", 0) # Hide solver output
optimize! (warehouse_model)

println("The optimal objective value is: ",
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objective_value(warehouse_model))
println("The optimal solution is: ", value. (X))

The optimal objective value is: 2.0
The optimal solution is: 2-dimensional DenseAxisArraysFloaté4,2,
index sets:
Dimension 1, ["Smartphone", "Socks", "Charger"]
Dimension 2, ["Hamburg", "Berlin"]
And data, a 3x2 Matrix{Floaté4:
1.6 0.0
-0.0 .0
1.0 5]

1
0.

Model Characteristics

Characteristics

« Is the model formulation linear/ non-linear?

« What kind of variable domain do we have?

» Do we know the split-orders based on the objective value?
« Why couldn’t we use HiGHS as solver?

Choosing a solver

« Identify problem structure, e.g. LP, MIP, NLP, QCP, MIQCP, ...
« What is the size of the problem?

o |s a commercial solver needed?

...% with

1 Commercial Solvers

Commercial solvers are faster and more robust as open source solvers but also
more expensive. During your studies, you can use most of them for free though!

Nonetheless, we will only use open source solvers in this course.

17




Global vs Local Optimality

Global
Optimum

/

Local Optima

A J

Figure 1: Local vs Global Optimum by Christoph Roser

Model Assumptions
Questions: On model assumptions

« What assumptions have we made?
» Problem with allocating SKUs to multiple warehouses?
« What else might pose a problem in the real world?

Impact

Can this be
applied?

Problem Size is Crucial

» Up to 10,000 SKUs — commercial solvers
e More than 10,000 SKUs — heuristics
» For example, the CHI heuristic

1 CHI-Heuristic

Detect dependencies between products and allocate them accordingly, as prod-
ucts within orders can have dependencies and products are bought with different
frequencies!

18
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Case Study

e More than 100,000 SKUs and several millions of orders

» Comparison of different heuristics®
» CHI: based on Chi-Square tests T. VI¢ek and G. Voigt [7]
» GP, GO, GS, BS: based on greedy algorithms [4]
» RA: Random allocation of SKUs to warehouses

Real Data Set

10% +

split ratio

o
X

)
X

—BS —GO —GP —GS —CHI —RA

0%

Conclusion

« Splits are of no benefit, except faster customer deliveries
« Increase workload, packaging and shipping costs

« Mathematical Optimisation of “full” problem not solvable
o CHI Heuristic close to mathematical optimisation

1 And that’s it for todays lecture!

We now have covered the Quadratic Multiple Knapsack Problem and are ready to
start solving some tasks in the upcoming tutorial.

Questions?

Literature

Literature I
For more interesting literature to learn more about Julia, take a look at the literature
list of this course.

¢QMKP is not applicable for instance in case study
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