Lecture VI - Minimizing Split Orders in E-Commerce # Applied Optimization with Julia Dr. Tobias Vlćek # Introduction # **E-Commerce Trends** Question: What are current trends in e-commerce? #### **E-Commerce Sales** - E-Commerce sales are growing fast: - Products are no longer bound between borders - Product variety is rising - Consumer shopping patterns are shifting - ► Brick-and-mortar stores loose customers to the internet - ► Covid-19 accelerated this trend even more #### Parcels Worldwide - The number of parcels is rising: - ► 2014: 44 billion parcels [1] - ▶ 2019: 103 billion parcels [2] - ► 2026: 220 262 billion parcels¹ [3] #### Pressure on infrastructure ¹Forecast, not actual number - Consumers nowadays expect free and fast deliveries and returns - Existing warehouses have to store an increasing range of products - Better customer service requires faster deliveries - Incurred fulfillment costs depend on the number of parcels # Pressure on the environment - Each parcel packaging consumes resources during production - Every dispatched parcel to the customer causes CO₂ emissions - In case of returns, more parcels cause more emissions # **Problem Structure** # Split Order Question: What is a split order? # No Split Order # Reason for Split Orders Question: Why might they occur? . . . - Stock availability: Some products are out of stock at a warehouse and need to be fulfilled from another warehouse - Capacity constraints: Some products are stored at different warehouses and need to be shipped from elsewhere # Impact of Split Orders Question: What are the consequences? . . . • Higher shipping costs - Increased packaging material - More CO₂ emissions - Higher operational complexity - Lower customer satisfaction # Mitigations? Question: What are possible mitigations? . . . - Consolidation: Ship to a central warehouse before dispatch - Cross-docking: Ship directly from supplier to customer - Transshipment: Ship between warehouses before delivery - Co-allocation: Predict co-appearance of products and allocate them to the same warehouse # Case Study Key information about the case: - a large European e-commerce retailer - the retailer has two warehouses - product range cannot be stored in either warehouse - product deliveries can be made to both warehouses - products do not have to be stored exclusively Problem Structure - Version 1 Optimizing Co-allocation Question: What could be our objective? We aim to improve the SKU²-warehouse allocation to minimize the number of split parcels resulting from SKUs being stored in different warehouses. #### **Available Sets** Question: What could be the sets here? . . . - \mathcal{I} Set of products indexed by $i \in \{1, 2, ..., |\mathcal{I}|\}$ - \mathcal{K} Set of warehouses indexed by $k \in \{1, ..., |\mathcal{K}|\}$ - \mathcal{M} Set of customer orders $m \in \{1, 2, ..., |\mathcal{M}|\}$ #### **Available Parameters** Question: What are possible parameters? - c_k Storage space of warehouse $k \in \{1,...,|\mathcal{K}|\}$ - $T=\left(t_{m,i}\right)$ Past customer orders for SKUs ²SKU: Stock Keeping Unit . . . Question: What could the transactional data look like? #### Transactional Data | $t_{m,i}$ | Α | В | С | D | | |-----------|---|---|---|---|--| | 1 | 1 | 1 | 1 | 0 | | | 2 | 1 | 1 | 1 | 0 | | | 3 | 1 | 1 | 0 | 0 | | | 4 | 1 | 0 | 0 | 1 | | | 5 | 1 | 0 | 0 | 1 | | | 6 | 1 | 0 | 0 | 1 | | | 7 | 1 | 0 | 0 | 1 | | | 8 | 0 | 0 | 1 | 1 | | #### Past vs. Future - ullet The transactional data T is based on past orders - It is a binary matrix of customer orders and SKUs - We use this data to assume future co-occurrence - ► Past co-occurrence predicts future co-occurrence . . . Question: What is your opinion on the assumption? # **Split-Order Minimization** Question: What could be our decision variable/s? . . . #### i We have the following sets: - \mathcal{I} Set of products indexed by $i \in \{1, 2, ..., |\mathcal{I}|\}$ - \mathcal{K} Set of warehouses indexed by $k \in \{1, ..., |\mathcal{K}|\}$ - \mathcal{M} Set of customer orders $m \in \{1, 2, ..., |\mathcal{M}|\}$. . . - $X_{i,k}$ 1, if $i \in \mathcal{I}$ is stored in $k \in \mathcal{K}$, 0 otherwise - $Y_{m,i,k}$ 1, if SKU $i\in\mathcal{I}$ is shipped from warehouse $k\in\mathcal{K}$ for customer order $m\in\mathcal{M}$, 0 otherwise # Integer Programming Model • A. Catalán and M. Fisher [4] created an integer model - Number of SKUs of E-Commerce retailers can easily be between 10,000 100,000 - Number of customer orders necessary for "stable" results have to be higher in the order of 100,000 - 10,000,000 . . . Question: Anybody an idea what this could mean? ### Implementation Challenges - Small instance with 10 SKUs and 1000 customer orders - CPLEX 20.1.0 needs 3100 seconds to solve the problem - Computation times scales exponentially - → Not applicable in real world applications! Any idea what could be done? # Problem Structure - Version 2 ## Heuristic Approach - Heuristic: Fast, but not necessarily optimal - Approximation: Not guaranteed to be optimal, but close - Computational Effort: Reasonable even for large instances . . . 🗘 Different view on the problem Focus on the warehouses and the co-appearance of SKUs! Discard the exact information about the customer orders. # Objective Question: What could be the objective? Maximize the coappearance of products that are often part of the same customer orders. ## **Transaction Matrix** ``` T = [1 1 1 0; 1 1 0; 1 1 0; 1 1 0 0; 1 0 0 1; 1 0 0 1; 1 0 0 1; 1 0 0 1; 0 0 1 1] # Create the coappearance matrix Q = T' * T println("Coappearance matrix Q:") display(Q) ``` ``` Coappearance matrix Q: ``` ``` 4×4 Matrix{Int64}: 7 3 2 4 3 3 2 0 2 2 3 1 4 0 1 5 ``` ## Coappearance Matrix - ullet Q is a symmetric matrix - Proposed by A. Catalán and M. Fisher [4] - $m{Q}=ig(m{T}^T\cdotm{T}ig)$ where $m{Q}=ig(q_{ij}ig)_{i\in\{1,\dots,\mathcal{I}\},j\in\{1,\dots,\mathcal{I}\}}$ - q_{ij} shows how often i and j appear in the same order . . . Question: What do the principal diagonal values tell us? . . . • How often each SKU appeared over all orders (binary!) # How to approach the problem? - Greedy Heuristic³: Allocation based on matrix - Mathematical Model⁴: Maximizes coappearance - GRASP⁵: Good on small instances - New: Max. coappearance with non-linear solver - New: Heuristic based on Chi-Square Tests ## **Basic Setting** # Available Data (Version 2) Question: What could be the sets? ³Simple and very fast, A. Catalán and M. Fisher [4] ⁴Computationally intensive with CPLEX, S. Zhu, X. Hu, K. Huang, and Y. Yuan [5] ⁵Greedy Randomized Adaptive Search Procedure, S. Zhu, X. Hu, K. Huang, and Y. Yuan [5] - \mathcal{I} Set of products indexed by $i \in \{1, 2, ..., |\mathcal{I}|\}$ - \mathcal{K} Set of warehouses indexed by $k \in \{1, ..., |\mathcal{K}|\}$. . . No customer order information is needed! We can focus on the SKUs and the warehouses, making the problem much smaller! #### **Available Parameters** Question: What are possible parameters? - c_k Storage space of warehouse $k \in \{1,...,|\mathcal{K}|\}$ - $\mathbf{Q} = \left(q_{ij}\right)_{i \in \{1,\dots,\mathcal{I}\}, j \in \{1,\dots,\mathcal{I}\}}$ Coappearance matrix . . #### !Transactional Data replaced Instead of the transactional data, we just use the coappearance matrix in our model! # Model Formulation #### **Decision Variables?** i We have the following sets: - \mathcal{I} Set of products indexed by $i \in \{1, 2, ..., |\mathcal{I}|\}$ - \mathcal{K} Set of warehouses indexed by $k \in \{1, ..., |\mathcal{K}|\}$. . . #### Our objective is to: Maximize the coappearance of products that are often part of the same customer orders. In more mathematical terms: Maximize the sum of all unique pair-wise values $q_{i,j}$ of all SKUs stored in the same warehouse. . . . Question: What could be our decision variable/s? #### **Decision Variables** • $X_{i,k}$ - 1, if SKU $i \in \mathcal{I}$ is stored in $k \in \mathcal{K}$, 0 otherwise #### Only one variable per SKU and warehouse! As we don't need the customer order information, we only need to make a decision for each SKU and warehouse pair! #### Decision Variable in Julia Question: How could we formulate the variable in Julia? ``` import Pkg; Pkg.add("SCIP") using JuMP, SCIP # SCIP is a non-commercial MIQCP solver warehouses = ["Hamburg", "Berlin"] # Add warehouses as a vector skus = ["Smartphone", "Socks", "Charger"] # Add SKUs as a vector warehouse_model = Model(SCIP.Optimizer) ``` . . . ``` @variable(warehouse_model, X[i in skus, k in warehouses], Bin) ``` ``` 2-dimensional DenseAxisArray{VariableRef,2,...} with index sets: Dimension 1, ["Smartphone", "Socks", "Charger"] Dimension 2, ["Hamburg", "Berlin"] And data, a 3×2 Matrix{VariableRef}: X[Smartphone, Hamburg] X[Smartphone, Berlin] X[Socks, Hamburg] X[Socks, Berlin] X[Charger, Hamburg] X[Charger, Berlin] ``` #### **Objective Function** #### i We need the following: - $X_{i,k}$ 1, if SKU $i \in \mathcal{I}$ is stored in $k \in \mathcal{K}$, 0 otherwise - q_{ij} Coappearance of SKU $i \in \mathcal{I}$ and $j \in \mathcal{I}$ #### Our objective is to: Maximize the sum of all unique pair-wise values $q_{i,j}$ of all SKUs stored in the same warehouse. Note, that this is a quadratic objective function! . . . Question: What could the objective function look like? # Quadratic Objective Function $$\text{maximize} \quad \sum_{i=2}^{\mathcal{I}} \sum_{j=1}^{i-1} \sum_{k \in \mathcal{K}} X_{ik} \times X_{jk} \times q_{ij}$$. . . #### i This is a quadratic objective function! The quadratic terms are $X_{ik} \times X_{jk}$. This objective function is based on the Quadratic Multiple Knapsack Problem (QMKP), formulated by A. Hiley and B. A. Julstrom [6]. # Objective Function in Julia Question: How could we formulate this in Julia? . . . ## **Constraints** What constraints? Question: What constraints? - Allocate each SKU at least once - Warehouses have a finite capacity - Capacity is not exceeded Single Allocation Constraint? The goal of this constraint is to: Ensure that each SKU is allocated at least once. . . . i We need the following variable: • $X_{i,k}$ - 1, if SKU $i \in \mathcal{I}$ is stored in $k \in \mathcal{K}$, 0 otherwise . . . Question: What could the constraint look like? Single Allocation Constraint $$\sum_{k \in \mathcal{K}} X_{ik} \geq 1 \quad \forall i \in \mathcal{I}$$ #### i Remember, this is the variable: • $X_{i,k}$ - 1, if SKU $i \in \mathcal{I}$ is stored in $k \in \mathcal{K}$, 0 otherwise . . . Question: How could we change the constraint to ensure that each SKU is allocated only once? . . . Question: How could we add the constraint in Julia? ## Single Allocation in Julia ``` @constraint(warehouse_model, single_allocation[i in skus], sum(X[i, k] for k in warehouses) >= 1) ``` ``` 1-dimensional DenseAxisArray{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, ScalarShape},1,...} with index sets: Dimension 1, ["Smartphone", "Socks", "Charger"] And data, a 3-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.GreaterThan{Float64}}, ScalarShape}}: single_allocation[Smartphone] : X[Smartphone,Hamburg] + X[Smartphone,Berlin] > 1 single_allocation[Socks] : X[Socks,Hamburg] + X[Socks,Berlin] > 1 single_allocation[Charger] : X[Charger,Hamburg] + X[Charger,Berlin] > 1 ``` # **Capacity Constraints?** The goal of these constraints is to: Ensure that the capacity of each warehouse is not exceeded. . . . i We need the following variables and parameters: - $X_{i,k}$ 1, if SKU $i \in \mathcal{I}$ is stored in $k \in \mathcal{K}$, 0 otherwise - c_k Storage space of warehouse $k \in \mathcal{K}$. . . Question: What could the second constraint be? #### **Capacity Constraints** $$\sum_{i\in\mathcal{I}} X_{ik} \leq c_k \quad \forall k\in\mathcal{K}$$. . . And that's basically it! . . . Question: How could we add the second constraint in Julia? ## Capacity Constraints in Julia ``` 1-dimensional DenseAxisArray{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}, ScalarShape},1,...} with index sets: Dimension 1, ["Hamburg", "Berlin"] And data, a 2-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}}, ScalarShape}}: capacity[Hamburg] : X[Smartphone,Hamburg] + X[Socks,Hamburg] + X[Charger,Hamburg] \leq 2 capacity[Berlin] : X[Smartphone,Berlin] + X[Socks,Berlin] + X[Charger,Berlin] \leq 1 ``` # **QMK Model** $$\text{maximize} \quad \sum_{i=2}^{\mathcal{I}} \sum_{j=1}^{i-1} \sum_{k \in \mathcal{K}} X_{ik} \times X_{jk} \times q_{ij}$$ subject to: $$\begin{split} & \sum_{k \in \mathcal{K}} X_{ik} \geq 1 \ \forall i \in \mathcal{I} \\ & \sum_{i \in \mathcal{I}} X_{ik} \leq c_k \forall k \in \mathcal{K} \\ & X_{ik} \in \{0,1\} \ \forall i \in \mathcal{I}, \forall k \in \mathcal{K} \end{split}$$ # QMK Model in Julia ``` set_attribute(warehouse_model, "display/verblevel", 0) # Hide solver output optimize!(warehouse_model) println("The optimal objective value is: ", ``` ``` objective_value(warehouse_model)) println("The optimal solution is: ", value.(X)) ``` ``` The optimal objective value is: 2.0 The optimal solution is: 2-dimensional DenseAxisArray{Float64,2,...} with index sets: Dimension 1, ["Smartphone", "Socks", "Charger"] Dimension 2, ["Hamburg", "Berlin"] And data, a 3×2 Matrix{Float64}: 1.0 0.0 -0.0 1.0 1.0 0.0 ``` ## **Model Characteristics** #### Characteristics - Is the model formulation linear/ non-linear? - What kind of variable domain do we have? - Do we know the split-orders based on the objective value? - Why couldn't we use HiGHS as solver? # Choosing a solver - Identify problem structure, e.g. LP, MIP, NLP, QCP, MIQCP, ... - What is the size of the problem? - Is a commercial solver needed? . . . #### i Commercial Solvers Commercial solvers are faster and more robust as open source solvers but also more expensive. During your studies, you can use most of them for free though! Nonetheless, we will only use open source solvers in this course. # Global vs Local Optimality Figure 1: Local vs Global Optimum by Christoph Roser # **Model Assumptions** Questions: On model assumptions - What assumptions have we made? - Problem with allocating SKUs to multiple warehouses? - What else might pose a problem in the real world? # **Impact** Can this be applied? #### Problem Size is Crucial - Up to 10,000 SKUs \rightarrow commercial solvers - More than 10,000 SKUs \rightarrow heuristics - For example, the CHI heuristic . . . #### i CHI-Heuristic Detect dependencies between products and allocate them accordingly, as products within orders can have dependencies and products are bought with different frequencies! ## Case Study - More than 100,000 SKUs and several millions of orders - Comparison of different heuristics⁶ - ► CHI: based on Chi-Square tests T. Vlćek and G. Voigt [7] - GP, GO, GS, BS: based on greedy algorithms [4] - ► RA: Random allocation of SKUs to warehouses #### Real Data Set #### Conclusion - Splits are of no benefit, except faster customer deliveries - Increase workload, packaging and shipping costs - Mathematical Optimisation of "full" problem not solvable - CHI Heuristic close to mathematical optimisation #### i And that's it for todays lecture! We now have covered the Quadratic Multiple Knapsack Problem and are ready to start solving some tasks in the upcoming tutorial. | ١) | | \sim | c. | t۱ | \sim | n | 0 | 1 | |----|---|---------------|----|----|--------|---|---|---| | Q | u | $\overline{}$ | .> | ıı | | ш | | • | | | | | | | | | | | ## Literature #### Literature I For more interesting literature to learn more about Julia, take a look at the literature list of this course. ⁶QMKP is not applicable for instance in case study # Bibliography - [1] Pitney Bowes Inc., "Pitney Bowes Parcel Shipping Index Reveals 48 Percent Growth in Parcel Volume since 2014." Accessed: May 27, 2021. [Online]. Available: https://www.businesswire.com/news/home/20170830005628/en/Pitney-Bowes-Parcel-Shipping-Index-Reveals-48 - [2] Pitney Bowes Inc., "Pitney Bowes Parcel Shipping Index Reports Continued Growth Bolstered by China and Emerging Markets." Accessed: May 27, 2021. [Online]. Available: https://www.businesswire.com/news/home/20191010005148/en/ - [3] Pitney Bowes Inc., "Pitney Bowes Parcel Shipping Index Reports Continued Growth as Global Parcel Volume Exceeds 100 billion for First Time Ever." Accessed: May 27, 2021. [Online]. Available: https://www.businesswire.com/news/home/20201012005150/en/ - [4] A. Catalán and M. Fisher, "Assortment Allocation to Distribution Centers to Minimize Split Customer Orders," SSRN Electronic Journal, vol. 0, no., p., 2012, doi: 10.2139/ssrn.2166687. - [5] S. Zhu, X. Hu, K. Huang, and Y. Yuan, "Optimization of product category allocation in multiple warehouses to minimize splitting of online supermarket customer orders," European Journal of Operational Research, vol. 290, no. 2, pp. 556–571, 2021, doi: 10.1016/j.ejor.2020.08.024. - [6] A. Hiley and B. A. Julstrom, "The Quadratic Multiple Knapsack Problem and Three Heuristic Approaches to It," in Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, M. Keijzer, Ed., New York, NY: Association for Computing Machinery, 2006, pp. 547–552. doi: 10.1145/1143997.1144096. - [7] T. Vlćek and G. Voigt, "Optimizing SKU-Warehouse Allocations to minimize Split Parcels in E-Commerce Environments," Submitted to Decision Sciences, 2024.